
30  October 2025 QST www.arrl.org  

Using AI to Improve the
Readability of Weak Beacons
Discover how a modest setup, Python programming, and

ChatGPT-assisted code can recover 10-meter CW beacons from the noise.
 Hal Feinstein, WB3KDU
I enjoy hunting for beacons on 10 meters. However,
propagation on this band can make it challenging to
hear beacons from certain parts of the world if the
band isn’t open in that direction. Ten meters is often
open with weak or barely audible signals that are at
or near the noise fl oor. These kinds of signals can
be heard for a few seconds, then fall in strength,
becoming nearly inaudible before dropping below the
noise.

In an effort to improve weak signals by making
them loud enough to recover the beacon’s CW ID
and message, I decided to look into simple signal-
processing methods, which no longer require expen-
sive custom equipment (or skilled technicians to build
and operate it).

My requirements for this project were to use equip-
ment I already had on hand, to learn what I could do
with Python programming language signal-processing

routines, and to not get bogged down learning the
details of using these tools and the idiosyncrasies of
the calling parameters. Artifi cial intelligence (AI) is
being used to successfully write computer code, so
I wanted to see if I could use it to write code for this
project.

I focused on using digital signal processing (DSP) by
fi ltering spectrum noise as close to the beacon signal
as possible. A similar function is provided by SDRplay
and SDRuno and is available with other software-
defi ned radios (SDRs) and even analog radios. It’s a
good place to start to become familiar with equipment
capabilities and procedures, as well as with program-
ming DSP routines using AI.

There are many good reasons to process in-phase
(I) and quadrature (Q) components (I/Q) versus basic
audio, including spectrum capture, phase control,
advanced demodulators, fi lter options, and several
noise-reduction treatments. These are substantial
advantages, but they’re also considerably complex.
This didn’t fi t with my goal of using a simple approach.
(I want to try I/Q-format DSP after exploring what can
be done with the audio signal.)

My programming was done in the Anaconda distribu-
tion of Python 3, and I used Jupyter Notebook

import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile

def plot_audio_spectrum(wav_file):
Read the WAV file
sample_rate, data = wavfile.read(wav_file)

If stereo, take one channel
if data.ndim > 1:
 data = data[:, 0]

Normalize data
data = data / np.max(np.abs(data))

Compute the Fourier Transform
n = len(data)
fft_data = np.fft.fft(data)
freqs = np.fft.fftfreq(n, d=1/sample_rate)

Get the magnitude spectrum
magnitude = np.abs(fft_data)

Limit to the first 5 kHz
limit = 3000
indices = np.where(np.abs(freqs) <= limit)

plt.figure(figsize=(12, 6))
plt.plot(freqs[indices], magnitude[indices])
plt.title(‘Audio Spectrum up to 3 kHz’)
plt.xlabel(‘Frequency (Hz)’)
plt.ylabel(‘Magnitude’)
plt.grid()
plt.xlim(0, limit)
plt.show()

Replace ‘your_audio_file.wav’ with the path to your WAV file
plot_audio_spectrum(‘/Users/argo/Desktop/SDRuno_20240915_103635_
28274000HZ.wav’)

Figure 1 — ChatGPT-generated Python code to read a .wav fi le
and produce an audio spectrum of up to 3 kHz.

QS2510-Feinstein02

0

60,000

50,000

40,000

30,000

20,000

10,000

M
ag

ni
tu

de

500 1000 1500 2000 2500 3000
Frequency (kHz)

Audio spectrum

Figure 2 — Audio spectrum of the .wav fi le read by the program
shown in Figure 1. The spike near 0 is ignored.

www.arrl.org QST October 2025  31

(https://jupyter.org), a web application for creating
and sharing computational documents, for code devel-
opment. Python has sub-routine libraries that provide
pre-written routines for various tasks. I used SciPy
(which includes a signal library with Fast Fourier Trans-
form, various fi lters, and helper functions), as well as
Matplotlib (which provides versatile tools for showing
signal and spectrum displays).

Modest Equipment
I used an SDRplay RSPdx receiver and SDRuno
receiving software. The later versions of this soft-
ware allow for capturing signals in audio and I/Q
format. My initial experiments used received audio
captured to .wav fi le format. SDRuno can also capture
audio signals in MP3, which is a lossy compression
scheme that is not suitable for this work, although it’s
much more compact than .wav format. With .wav, 60
seconds of audio becomes a 10-megabyte fi le. This
means capturing more than short audio spans results
in big .wav fi les, so that’s something to keep in mind.

SDRuno runs on Windows, so I transferred my saved
fi les to a thumb drive, which I then opened on my iMac
for signal processing. I chose this method because it
was quick.

Writing Python Programs with AI
One of my goals for this project was to spend most of
my time trying various DSP methods, and less time
writing code and debugging. In the past, this required
programming skills, such as knowledge of DSP, the
underlying DSP libraries, a programming language,
and the language constructs that supported DSP data
formats. AI large language models (LLMs), such as
ChatGPT, Copilot, Gemini, and others, have been used
to write programs that solve many types of tasks.

For this project, I used ChatGPT-4o to generate DSP
programs in Python. (Keep in mind that AI models like
ChatGPT occasionally generate programs with bad
syntax. I discovered this when using it to generate
a program in a different scripting language. When I
asked ChatGPT if a specifi c statement it generated
used the correct syntax, it fi xed the error and rewrote
the program.)

I developed three tools to try to improve the 10-meter
beacon signal: a spectrum display, a program that
reports the frequency of a peak signal, and a .wav-to-
.wav fi le fi lter program. I used my iMac’s .wav fi le player
to listen for any improvements to the readability of the
signal.

import numpy as np
import scipy.io.wavfile as wav
import matplotlib.pyplot as plt

def find_max_frequency(wav_file):
Read the WAV file
sample_rate, data = wav.read(wav_file)

If stereo, take only one channel
if data.ndim == 2:
 data = data[:, 0]

Normalize the data
data = data / np.max(np.abs(data))

Perform FFT
n = len(data)
fft_data = np.fft.fft(data)
fft_magnitude = np.abs(fft_data)

Frequency array
freqs = np.fft.fftfreq(n, d=1/sample_rate)

Find the peak frequency
peak_index = np.argmax(fft_magnitude[:n // 2]) # Only look at
 the positive frequencies
peak_freq = freqs[peak_index]
peak_magnitude = fft_magnitude[peak_index]

return peak_freq, peak_magnitude

Example usage
if _name_ == “_main_”:

wav_file = ‘/Users/argo/Desktop/SDRuno_20240915_103635_282740
00HZ.wav’
frequency, magnitude = find_max_frequency(wav_file)
print(f‘Max frequency: {frequency:.2f} Hz, Magnitude:
{magnitude:.2f}’)

Max frequency: 2000.77 Hz, Magnitude: 58907.04

Figure 3 — ChatGPT-generated Python code that fi nds the
frequency of the strongest component in the audio spectrum of a
.wav fi le.

import numpy as np
from scipy.io import wavfile
from scipy.signal import butter, lfilter

def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype=‘band’)
return b, a

def bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = lfilter(b, a, data)
return y

def filter_wav_file(input_file, output_file, lowcut=1950.0,
highcut=2200.0):
#Read the WAV file
sample_rate, data = wavfile.read(input_file)

Check if the data is stereo or mono
if len(data.shape) > 1:
 data = data[:,0] # Take only one channel if stereo

Apply the bandpass filter
filtered_data = bandpass_filter(data, lowcut, highcut, sample_
rate)

Save the filtered audio to a new WAV file
wavfile.write(output_file, sample_rate, filtered_data.
astype(np.int16))

Example usage
if _name_ == ‘_main_’:

input_wav_file = ‘/Users/argo/Desktop/SDRuno_20240918_112528_2
8274000HZ.wav’ # Replace with your input WAV file path
output_wav_file = ‘/Users/argo/Desktop/output.wav’ # Replace
with your desired output file path

Set the cutoff frequencies
lowcut = 1980.0 # Low cutoff frequency in Hz
highcut = 2050.0 # High cutoff frequency in Hz

filter_wav_file(input_wav_file, output_wav_file, lowcut,
highcut)

Figure 4 — ChatGPT-generated Python code that reads a .wav
fi le, applies a Butterworth band-pass fi lter on the audio, and
writes the output to another .wav fi le.

32  October 2025 QST www.arrl.org  

Program One — Display the Audio Spectrum
Using the SDRplay RSPdx and SDRuno audio, I
captured CW beacon signals in two .wav fi les, in which
the beacon had some reasonably strong portions
followed by weak and “washed-out” sections. Concen-
trating on these sections, I used ChatGPT to write
code for and use an audio spectral display to get an
idea of what the .wav fi le spectrum looked like to try to
improve the signal.

Creating the audio spectrum display program using
ChatGPT is straightforward. In the ChatGPT dialog
box, enter: “Write a program that reads a .wav fi le
and displays the fi rst 3 kHz of its audio spectrum.”
The results are shown in Figure 1. The fi le name was
changed to one of the captured .wav fi les, but other-
wise, it’s the exact code output by ChatGPT. The
Python program code is well documented. ChatGPT
added a brief explanation of what each part of the
program does. The spectral display output is shown in
Figure 2.

The audio tone generated by SDRplay and SDRuno
occurs because the beacon signal (which is sent using
unmodulated CW) is being received in sideband mode.

Program Two — Report the Peak Frequency
Next, I had ChatGPT write a program that reports the
frequency of the strongest signal component in the
audio spectrum. Figure 3 shows the code with the
resulting strongest frequency listed at bottom left.

In program one’s spectrum display there was a signifi -
cant frequency component somewhere around 2 kHz,
but you can’t tell if it’s above or below 2 kHz, or by
how much. This program reports the fi le’s peak value,
showing a frequency of 2000.77 Hz. The fractional
0.77 Hz can be dropped, concentrating only on the
2 kHz value.

Program Three — Butterworth Audio Filter
The third program reads the .wav fi le and applies a

Butterworth band-pass fi lter that removes noise at
frequencies below and above a specifi c band-pass
cutoff. A small section of spectrum showing the 2 kHz
signal is what’s left.

In the ChatGPT dialog box, enter: “Write a Python
program to read a .wav fi le and fi lter it so only the
frequencies between 1900 kHz and 2200 kHz are
passed, and write it out as an output .wav fi le.” The
program is shown in Figure 4. Figures 5 and 6 show
the output before and after the fi lter.

Parting Thoughts
This project successfully used simple signal-
processing procedures to improve the readability of
a weak beacon signal. Figure 6 shows the fi ltered
beacon signal with part of its location coordinates
being decipherable. The audio quality of the signal is
signifi cantly improved as well, extending the ability to
read the beacon transmission at least partially down
into the noise.

This was my fi rst time using ChatGPT to write
programs that support simple signal-processing tasks.
The tasks were relatively simple, but I’d like to see how
far this approach to program construction can go.

The techniques used in this article open new doors to
amateur radio experimenters. Experimenting with code
developed by ChatGPT is limited only by your imagina-
tion!

Hal Feinstein, WB3KDU, can be reached at wbkdu588@gmail.
com.

For updates to this article,
see the QST Feedback page
at www.arrl.org/feedback. If you enjoyed this article, cast your vote at

www.arrl.org/cover-plaque-poll

VO TE

QS2510-Feinstein05

10,000

5,000

0

5,000Am
pl

itu
de

10 2 3 4 5
Time (seconds)

Figure 5 — The fi rst 5 seconds of the original audio from the fi rst
beacon .wav fi le.

QS2510-Feinstein06

4,000

2,000

0

2,000Am
pl

itu
de

10 2 3 4 5
Time (seconds)

Figure 6 — The fi ltered output produced by program three.
Here we see only the fi rst 5 seconds of the fi ltered beacon .wav
fi le fi ltered with a Butterworth audio band-pass fi lter shown in
Figure 4. The CW letters visible are “9MM,” which are part of the
beacon’s Maidenhead coordinate, EK19MM (near Mexico City,
Mexico). Notice the scale diff erence between Figures 5 and 6.

