
/*

Fan Speed Controller - Author Glen Popiel - KW5GP

Based on OneWire Library - Copyright (c) 2007, Jim Studt (original old

version - many contributors since)

The latest version of this library may be found at:

 http://www.pjrc.com/teensy/td_libs_OneWire.html

OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since

January 2010. At the time, it was in need of many bug fixes, but had

been abandoned the original author (Jim Studt). None of the known

contributors were interested in maintaining OneWire. Paul typically

works on OneWire every 6 to 12 months. Patches usually wait that

long. If anyone is interested in more actively maintaining OneWire,

please contact Paul.

Version 2.2:

 Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com

 Arduino Due compatibility,

http://arduino.cc/forum/index.php?topic=141030

 Fix DS18B20 example negative temperature

 Fix DS18B20 example's low res modes, Ken Butcher

 Improve reset timing, Mark Tillotson

 Add const qualifiers, Bertrik Sikken

 Add initial value input to crc16, Bertrik Sikken

 Add target_search() function, Scott Roberts

Version 2.1:

 Arduino 1.0 compatibility, Paul Stoffregen

 Improve temperature example, Paul Stoffregen

 DS250x_PROM example, Guillermo Lovato

 PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com

 Improvements from Glenn Trewitt:

 - crc16() now works

 - check_crc16() does all of calculation/checking work.

 - Added read_bytes() and write_bytes(), to reduce tedious loops.

 - Added ds2408 example.

 Delete very old, out-of-date readme file (info is here)

Version 2.0: Modifications by Paul Stoffregen, January 2010:

http://www.pjrc.com/teensy/td_libs_OneWire.html

 Search fix from Robin James

 http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27

 Use direct optimized I/O in all cases

 Disable interrupts during timing critical sections

 (this solves many random communication errors)

 Disable interrupts during read-modify-write I/O

 Reduce RAM consumption by eliminating unnecessary

 variables and trimming many to 8 bits

 Optimize both crc8 - table version moved to flash

Modified to work with larger numbers of devices - avoids loop.

Tested in Arduino 11 alpha with 12 sensors.

26 Sept 2008 -- Robin James

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27

Updated to work with arduino-0008 and to include skip() as of

2007/07/06. --RJL20

Modified to calculate the 8-bit CRC directly, avoiding the need for

the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010

-- Tom Pollard, Jan 23, 2008

Jim Studt's original library was modified by Josh Larios.

Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Much of the code was inspired by Derek Yerger's code, though I don't

think much of that remains. In any event that was..

 (copyleft) 2006 by Derek Yerger - Free to distribute freely.

The CRC code was excerpted and inspired by the Dallas Semiconductor

sample code bearing this copyright.

//---

// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights

Reserved.

//

// Permission is hereby granted, free of charge, to any person obtaining

a

// copy of this software and associated documentation files (the

"Software"),

// to deal in the Software without restriction, including without

limitation

// the rights to use, copy, modify, merge, publish, distribute,

sublicense,

// and/or sell copies of the Software, and to permit persons to whom the

// Software is furnished to do so, subject to the following conditions:

//

// The above copyright notice and this permission notice shall be

included

// in all copies or substantial portions of the Software.

//

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS

// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT.

// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM,

DAMAGES

// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE,

// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

// OTHER DEALINGS IN THE SOFTWARE.

//

// Except as contained in this notice, the name of Dallas Semiconductor

// shall not be used except as stated in the Dallas Semiconductor

// Branding Policy.

//---

*/

#include <OneWire.h> // Include the OneWire Library

#define temp_sensor 10 // Temperature Sensor attached to Pin 10

#define red 7 // Red LED on pin 7

#define blue 8 // Blue LED on pin 8

#define green 9 // Green LED on pin 9

#define fan 6 // Fan drive on pin 6

#define alarm 5 // alarm buzzer on pin 5

#define low_temp 80 // temperature to start fan

#define high_temp 95 // temperature to turn fan on full

#define alarm_temp 110 // alarm temperature

int DS18S20_Pin = temp_sensor; //DS18S20 Signal pin on temp_sensor pin

//Temperature chip I/O

OneWire ds(DS18S20_Pin); // on temp_sensor pin

void setup(void)

{

 for (int x = 5; x <=9; x++) // Set the Pin Modes for Pins 5 through 9

 {

 pinMode(x, OUTPUT);

 if (x <= 6) // For pins 5 and 6 start Low, 7-9 start High (LED off)

 {

 digitalWrite(x, LOW);

 } else {

 digitalWrite(x, HIGH);

 }

 }

 ledOff(); // Turn LED Off if below low_temp

}

void loop(void)

{

 float temperature = getTemp(); // Read the Temperature Sensor

 if (temperature < low_temp) // Everything off if below low_temp

 {

 ledOff();

 digitalWrite(fan, LOW);

 digitalWrite(alarm, LOW);

 }

 if (temperature >= low_temp && temperature <= high_temp) // Run the

Fan as a proportion of the temp

 {

 analogWrite(fan, map(temperature,low_temp, high_temp,30,255)); //

Starting PWM should be 30 or above to prevent fan stall

 ledBlue(); // Indicate Fan Running - Temp within range

 // Turn on the fan at slow speed

 }

 if (temperature > high_temp && temperature < alarm_temp) // Turn the

Fan on full speed

 {

 analogWrite(fan,255); // Set the Fan to Max Speed

 ledGreen(); // Indicate Fan Running - Max Speed

 }

 if (temperature >= alarm_temp) // Overtemp Alarm

 {

 ledRed(); // Indicate Temp over Limit

 digitalWrite(alarm,HIGH); // Sound the Alarm

 } else {

 digitalWrite(alarm, LOW);

 }

}

// ------------------------ Functions ----------------------------------

float getTemp() //returns the temperature from one DS18S20 in DEG

Farenheit

{

 byte data[12];

 byte addr[8];

 if (!ds.search(addr)) // Look for more sensors

 {

 //no more sensors on chain, reset search

 ds.reset_search();

 return -1000;

 }

 if (OneWire::crc8(addr, 7) != addr[7]) // Check the CRC

 {

 return -1000;

 }

 if (addr[0] != 0x10 && addr[0] != 0x28) // Verify the Device type

 {

 return -1000;

 }

 ds.reset();

 ds.select(addr);

 // ds.write(0x44,1); // start conversion, with parasite power on at

the end

 ds.write(0x44); // start conversion, without parasite power on at the

end

 byte present = ds.reset();

 ds.select(addr);

 ds.write(0xBE); // Read Scratchpad

 for (int i = 0; i < 9; i++)

 { // we need 9 bytes

 data[i] = ds.read();

 }

 ds.reset_search();

 byte MSB = data[1]; // Split the data into MSB and LSB

 byte LSB = data[0];

 float tempRead = ((MSB << 8) | LSB); //using two's compliment

 float Centigrade = tempRead / 16; // Calculate temperature in

Centigrade

 float Farenheit = Centigrade * 1.8 + 32.0; // Convert from Centigrade

to Farenheit

 return Farenheit; // Return Farenheit - Can be changed to return

Centigrade if desired

}

// LED Off function

void ledOff()

{

 digitalWrite(red, HIGH); // Set all RBG LED pins High (Off)

 digitalWrite(green, HIGH);

 digitalWrite(blue, HIGH);

}

// RED LED ON function

void ledRed()

{

 digitalWrite(red, LOW); // Turn on the RGB Red LED On

 digitalWrite(green, HIGH);

 digitalWrite(blue, HIGH);

}

// Green LED ON function

void ledGreen()

{

 digitalWrite(red, HIGH);

 digitalWrite(green, LOW); // Turn on the RGB Green LED On

 digitalWrite(blue, HIGH);

}

// Blue LED ON function

void ledBlue()

{

 digitalWrite(red, HIGH);

 digitalWrite(green, HIGH);

 digitalWrite(blue, LOW); // Turn on the RGB Blue LED On

}

