2014 ARRL September VHF Contest Results

2014 will go down as a good year – conditions were interesting and activity continues to head in the right direction.

Jeff Klein, K1TEO, wa2teo@aol.com

As with most VHF+ contests, stations in the right place at the right time had some extra fun. Those not experiencing enhanced conditions still had the opportunity to put their stations to the test, say hello to friends, work some new grids, and experience the thrill of a distant and unexpected station. Submitted logs were up for the third year in a row and keeping that trend going would be a shot in the arm for VHF+ contesting.

Band Conditions

As is usually the case, band conditions varied widely around the country during the contest. News reports a few days before the contest spoke of large eruptions from the Sun, sparking hope for a major aurora during the contest. The K index did soar to 7 on Friday night, but that did not lead to the hoped-for aurora. Instead, solar activity helped create some interesting conditions over the weekend in the form of E-skip (E_s), Trans-

Club Competition

Category	Logs	Club Name	Total
Medium	28	Potomac Valley Radio Club	827,961
	22 15	Mt Airy VHF Radio Club North East Weak Signal	541,784
		Group Society of Midwest	510,961
	20	Contesters	238,626
	11 30	Yankee Clipper Contest Club Pacific Northwest VHF	219,299
	00	Society	173,301
		Badger Contesters	170,428
		Carolina DX Association	168,812
		Contest Club Ontario	149,576
		Northern Lights Radio Society	
	0	Michigan VHF-UHF Society	73,840
		Frankford Radio Club	63,362 62,932
	6	Niagara Frontier Radiosport Florida Contest Group	44,713
		Rochester VHF Group	33,740
		CTRI Contest Group	31,214
		Bristol (TN) ARC	20,193
		Northern California	,
		Contest Club	15,847
		DFW Contest Group	4,363
		Arizona Outlaws Contest Club	1,402
	3	Minnesota Wireless Assn	182
Local	5	Granite State ARA	18,329
	5	Bergen ARA	9,738
		Raritan Bay Radio Amateurs	9,458
		Winona ARC	8,587
	3	Florida Weak Signal Society Grand Mesa Contesters of	8,525
		Colorado	3,424

Equatorial Propagation (TEP), and $\rm E_{s}\text{-to-TEP}$ combined propagation between North and South America.

Saturday afternoon there was a very strong E_s opening from Florida to the Northeast and Midwest. Florida stations enjoyed working stations one after another for a few hours. Florida station KD2JA reported "feeling like rare DX" as he enjoyed the pileups during the opening.

As the opening progressed, the E_s linked with TEP to create some exciting north-south paths. CX9AU was particularly active from South America and was able to work many grids in North America while the band was open. He worked many stations in the Midwest, plus a few in Florida, Texas, Mexico, and the Caribbean. Other US stations, including K3ZO and K1RZ in Maryland, worked paths to Argentina. Down in Texas, W3XO was working into Brazil, Argentina, Chile, Mexico, and Puerto Rico.

The Sun continued to work some additional magic on Sunday as there was more E_s late in the contest. W3XO moved the beam west and worked quite a few stations in Arizona and Southern California. Likewise, Multioperator station K5QE in eastern Texas found the band open as well. Overall, it is always nice to have 6 meter propagation during the September contest, and while not the

Can 667 elements carry the day? Almost! Bob, K2DRH, put up this new tower in Illinois carrying twothirds of one thousand elements and nearly pulled off a win over his rival, Ed, K1TR. That would have been some victory from the Midwest! [Bob Streigl, K2DRH, photo]

type of widespread E_s opening we often see in the June contest, it added some extra excitement to this year's event.

Going into the contest weekend, the propagation prediction maps did not indicate there would be any significant tropospheric enhancement on the bands. As we saw in 2013, sometimes these prediction programs miss the possibilities. With more stations on, particularly from mountaintops, openings that might otherwise go unnoticed are found. That was the case this year, especially for those at high points in the Appalachian Mountains and in various parts of the

То

Sin Lov

K1T K2E WB (V N4C KX4 K1K AF1 N3F WB W9

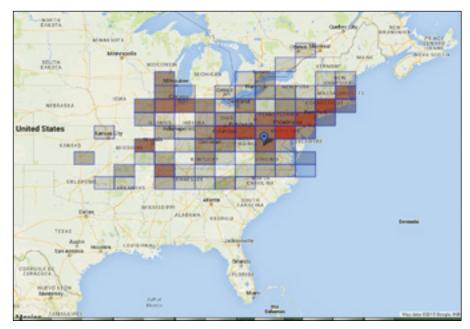
Sing Higi K1T K1F K3T W3I K8T K1C W42 WØI WB2 N3F

Sing Por W83 W71 K7A W83 VE3 K0N K07 KQ2 AC2

Sing 3-B

WA2 (K KB8 N1Z K9A K5V K15 K6M N1II N9T WB2

p Ten				
gle Operat v Power	tor,	Single Operator, FM Only		
rr Drh 1gqr	162,688 143,325 109,678	K7NIT KA6AMB K6QCB N9VM	1,157 243 224	
V1SJ op) QWZ 4R (G IT	96,418 66,898 63,600 62,016	(N1VM op) WX4ET K2SI KK6DCM	182 135 72 52	
RN 2JAY GA	53,648 38,475 37,800	NØJP NØOWT NØNUO	1 1 1	
gle Operat h Power	tor,	Limited Multioperator		
reo Az Tuf Ip Tok Ax Zrz UC 2rvx	297,929 267,066 128,816 93,024 88,356 82,010 75,096 71,820 52,326	K8EP W3SO AA4ZZ W4IY W2LV W4NH N2NT W1QK N8ZM N3MK	170,502 165,597 165,197 115,984 97,785 84,923 60,170 46,314 39,237 27,990	
HBX 48,816 gle Operator,		Multioperator		
speration spm LUD ATN 2AMU 3AAQ VR 7JTM 7WPJ	14,972 12,604 7,552 1,430 805 780 680	W2SZ K1WHS K2LIM W2EA K5QE N2BJ W1XM K6HS W4AS	766,080 251,036 182,546 168,840 64,974 21,888 19,323 14,749 14,160 13,496	
7WPJ 2RP 2GJ	230 180 117	WA3EHD Rover		
gle Operat and	t or ,	K8GP VE3OIL/R WA3PTV	194,112 72,000 53,037	
2FGK (2LNS op) 3U ZN AKS /IP YG	28,301 19,847 10,047 9,120 5,512 3,990	NN3Q W9SNR/R AG4V/R KA9VVQ/R KF8QL/R KF2MR/R W1AUV/R	47,775 44,884 42,024 35,150 32,400 22,192 19,734	
AI BM	3,726 3,042 2,712 2,236	Limited Rove		
rf 2EOD		NF2RS/R WW7D/R WB2SIH/R AL1VE/R N2ZBH/R K9JK/R K9GY/R NL7B/R K8DOG/R KØBAK	61,600 32,118 23,892 20,294 16,820 13,426 11,118 10,920 5,412 5,382	
		Unlimited Ro N2SLN/R		
		NØLNO/R W3HMS KJ1K K2TER KB2YCC AF6AV	54,500 21,321 10,868 8,460 6,545 1,071 56	


Midwest, down to Tennessee and Arkansas.

Two stations in the right place at the right time were W8SPM and N4QWZ. W8SPM headed up to a favorite location, 4800-foot Spruce Knob in FM08, West Virginia. Entering Single Operator Portable with its 10 W maximum power limitation, Sam was able to work an amazing 76 grids (as shown in the map generated by K1RA) and many QSOs. Despite his minimal setup, the band conditions on 144 MHz were so outstanding that he was able to work as far west as Kansas and Oklahoma, as far north as Wisconsin, and as far to the northeast as Maine. "I always hoped just one time to get great conditions, and I think this was it." With these tremendous results, he was able to take the top spot in the category, despite only operating on one band.

Todd, N4QWZ, has long been a top competitor in the Single Operator, Low Power (SOLP) category. Todd was definitely in the right place in this contest as he put a steady signal into the northeastern US for much of Saturday and Sunday evenings. Jeff, K1TEO, noted that he has lived at the same location in FN31 (CT) for over 25 years and only had tropo propagation to Todd's area on 2 meters and up a handful of times. Yet in this contest, Todd was S-9 over the 800+ mile path both Saturday and Sunday evenings and was also worked on 222 and 432 MHz. Despite Todd's potent signal being heard for several hours, not a single other station in his area was heard by Jeff. Todd's best DX was to K1WHS in Maine, almost 1000 miles to the northeast. He also worked W2SZ on 902 MHz for a new state on the band and a fine-business 800-mile QSO. N4QWZ also did very well on 222 and 432, working many of the same paths as on 2 meters.

In the East, powerhouse Multioperator station W2SZ used their elevation to work the enhancement to a far wider degree than anyone else in the area. Using their usual Mount Greylock location, they managed a good number of long-haul QSOs on all bands to the west and southeast. This helped them achieve higher than normal grid totals, particularly on 144, 222, and 432 MHz, and another win in their category.

Others on mountaintops also enjoyed extended contacts, including Limited Multioperator (LM) stations W4NH in EM85, Georgia, and W4IY in FM08, Virginia. W4NH worked many stations in the Midwest beyond normal range, extending as far as K2DRH and K9AKS in EN41, several stations in Wisconsin, W8MIL in northern Michigan, and their best DX of over 800 miles to W2SZ in FN32. W4IY was even more exposed to the duct propagation, probably experiencing similar conditions as fellow FM08 station W8SPM, albeit with more power and bigger antennas. Both worked as far as NØIRS in EM29. Kansas, a 900+ mile path. They also worked into Arkansas, western Illinois, and Wisconsin. Their log shows a number of QSOs into the Chicago area, over 600 miles away.

Sam, W8SPM, was able to work an amazing 76 grids on 144 MHz using only 10 W of power in the Single Operator Portable category. (Darker colors indicate more QSOs in a grid.) [Andrew Zwirko, K1RA, image]

Regional Leaders

A/B/Q – Single Operator, Low Power/High Power/Portable; 3B – Single Operator, 3-Band; FM – Single Operator, FM Only; L/M – Limited/Unlimited Multioperator; R/RL/RU – Classic/Limited/Unlimited Rover

Northeast RegionSoutheast Region(New England, Hudson, and Atlantic Divisions; Maritime and Quebec Sections)(Delta, Roanoke, and Southeastern Divisions)		Central Region	Midwest Region	West Coast Region
		(Central and Great Lakes	(Dakota, Midwest, Rocky	(Pacific, Northwestern, and
		Divisions; Ontario East,	Mountain, and West Gulf	Southwestern Divisions;
		Ontario North, Ontario South,	Divisions; Manitoba and	Alberta, British Columbia,
		and Greater Toronto)	Saskatchewan Sections)	and NWT Sections)
K1TR 162,688 A WB1GOR 09,678 A K1KG 63,600 A AF1T 62,016 A N3RN 53,648 A K1RZ 267,066 B K1RZ 267,066 B K1RZ 267,066 B K1RZ 267,066 B WB2RVX 52,326 B WB2AWU 1,430 Q KC2GAP 180 Q AC2GJ 117 Q N12RV 33 Q KC2JRQ 16 Q WA2FGK 72 FM W3SO 165,597 L N2INT 60,170 L W12V 97,785 L N2NT 60,600 M K1HHS 251,036 M K12LW 18,322 766,080 W12V 97,785 L N2NT 60,170 L	N4QWZ 96,418 A KX4F 66,898 A K4FJW 10,248 A KD2JA 8,528 A WC4H 8,326 A W3IP 93,024 B W4RX 36,920 B W4RX 36,920 B W1P 22,022 B WD4MGB 9,625 B W8SPM 14,972 Q KC8KSK 12 O KC4KVZ 416 3B KJ4VTH 675 3B KG4KVZ 416 3B WX4ET 135 FM W4IY 115,984 L W4IY 115,984 L W4IY 115,984 L W4NH 84,923 L W4NH 84,923 L W4NH 84,923 N3MK V2002 M K4QE 90 W4WNT 28 M <tr< td=""><td>K2DRH 143,325 A W9GA 37,800 A N9DG 33,345 A WZ8T 19,462 A VA3ZV 12,110 A K8TOK 88,356 B WØUC 71,820 B K9EA 43,989 B K9CT 28,245 B VA3ST 28,078 B VE3AAQ 805 O KB8U 19,847 3B K9AKS 9,120 3B N9TF 2,712 3B N8ZM 39,237 L N2BJ 21,888 M K9P 11,394 M N9IO 240 M K3WA 192 M VE30IL/R 72,000 R</td><td>KØSIX 10,260 Å KKØQ 6,650 Å WB5ZDP 3,528 Å NØLL 3,450 Å AA5AM 3,040 Å KFØM 10,496 B KSLLL 7,261 B KØAWU 5,145 B W3XO/5 4,464 B KØNR 780 Q NØJK 30 Q KISYG 3,990 3B NØAT 108 3B KSKBV 70 3B KSKBV 70 3B KSKW 64 3B NØAT 108 3B KSKL 49 3B NØLP 1 FM NØOWT 1 FM NØOWT 1 FM NØVB 532 L KØVB 532 L KØVB 532 M KGOZSKM/R 14,575 R KØVVQ/R 35,150 R KØBBC/R</td><td>AF6RR 12,954 A KE0CO 11,730 A WA6OSX 8,541 A K7YDL 7,227 A K2GMY 5,760 A N7EPD 20,708 B KD7TS 14,455 B KE7SW 13,104 B W7FI 9,024 B KC6ZWT 6,162 B W7LUD 12,604 Q K7ATN 7,552 Q WA7JTM 680 Q KX7L 98 Q K6MI 3,3276 3B W6JK 1,357 3B W6JK 1,357 3B K0VIZ 480 3B K0VIZ</td></tr<>	K2DRH 143,325 A W9GA 37,800 A N9DG 33,345 A WZ8T 19,462 A VA3ZV 12,110 A K8TOK 88,356 B WØUC 71,820 B K9EA 43,989 B K9CT 28,245 B VA3ST 28,078 B VE3AAQ 805 O KB8U 19,847 3B K9AKS 9,120 3B N9TF 2,712 3B N8ZM 39,237 L N2BJ 21,888 M K9P 11,394 M N9IO 240 M K3WA 192 M VE30IL/R 72,000 R	KØSIX 10,260 Å KKØQ 6,650 Å WB5ZDP 3,528 Å NØLL 3,450 Å AA5AM 3,040 Å KFØM 10,496 B KSLLL 7,261 B KØAWU 5,145 B W3XO/5 4,464 B KØNR 780 Q NØJK 30 Q KISYG 3,990 3B NØAT 108 3B KSKBV 70 3B KSKBV 70 3B KSKW 64 3B NØAT 108 3B KSKL 49 3B NØLP 1 FM NØOWT 1 FM NØOWT 1 FM NØVB 532 L KØVB 532 L KØVB 532 M KGOZSKM/R 14,575 R KØVVQ/R 35,150 R KØBBC/R	AF6RR 12,954 A KE0CO 11,730 A WA6OSX 8,541 A K7YDL 7,227 A K2GMY 5,760 A N7EPD 20,708 B KD7TS 14,455 B KE7SW 13,104 B W7FI 9,024 B KC6ZWT 6,162 B W7LUD 12,604 Q K7ATN 7,552 Q WA7JTM 680 Q KX7L 98 Q K6MI 3,3276 3B W6JK 1,357 3B W6JK 1,357 3B K0VIZ 480 3B K0VIZ

Others in the right place for these terrific conditions included K8EP who rode the wave to a top finish in the LM category, fellow LM competitors W3SO and AA4ZZ, and K1RZ operating Single Operator High Power in Maryland.

Club Competition

A total of 21 clubs competed in the Medium Category competition, while there were six competitors in the Local Category. Nearly 45% of all log submissions were tied to a club score. Repeating as the top scoring club was the Potomac Valley Radio Club, with over 800,000 points. They had 28 members submit scores, which was a nice increase from 20 in 2013. The Mt Airy VHF Radio Club moved up a place to second as they topped the 500,000 mark with 22 entrants. They were followed by the North East Weak Signal Group, also over 500,000 points. The top score from outside the Northeast was the Society of Midwest Contesters with almost a quarter-million points to take 4^{th} place. The Pacific Northwest VHF Society had the most club entrants with 30, helping them to place 6^{th} , generating significant activity in that part of the country.

The Granite State Amateur Radio Association took top honors in the Local category competition. Places two through five were hotly contested, with only about a thousand points separating the clubs. A pair of New Jersey clubs, the Bergen Amateur Radio Association and the Raritan Bay Radio Amateurs, finished in 2nd and 3rd.

Conclusion

Good conditions in some places but not others remind us of the reality of the VHF bands: you have to be on the bands operating so that when you are in the right place at the right time — as W8SPM, N4QWZ, CX9AU, and others were — you are ready to experience the fun of working some great propagation. Get on and operate in the contest next September 19 and 20 — you may be the one in the right place at the right time!

A special thanks is due to K1RA, who once again created the software for generating the maps used in this contest writeup. Great job, Andy!

More Maps, Detailed Results

There are more contact maps generated specially for this contest and a detailed look at the top finishers in the full results online at www.arrl.org/contestresults-articles.